Altered gingipain maturation in vimA- and vimE-defective isogenic mutants of Porphyromonas gingivalis.

نویسندگان

  • Elaine Vanterpool
  • Francis Roy
  • Lawrence Sandberg
  • Hansel M Fletcher
چکیده

We have previously shown that gingipain activity in Porphyromonas gingivalis is modulated by the unique vimA and vimE genes. To determine if these genes had a similar phenotypic effect on protease maturation and activation, isogenic mutants defective in those genes were further characterized. Western blot analyses with antigingipain antibodies showed RgpA-, RgpB-, and Kgp-immunoreactive bands in membrane fractions as well as the culture supernatant of both P. gingivalis W83 and FLL93, the vimE-defective mutant. In contrast, the membrane of P. gingivalis FLL92, the vimA-defective mutant, demonstrated immunoreactivity only with RgpB antibodies. With mass spectrometry or Western blots, full-length RgpA and RgpB were identified from extracellular fractions. In similar extracellular fractions from P. gingivalis FLL92 and FLL93, purified RgpB activated only arginine-specific activity. In addition, the lipopolysaccharide profiles of the vimA and vimE mutants were truncated in comparison to that of W83. While glycosylated proteins were detected in the membrane and extracellular fractions from the vimA- and vimE-defective mutants, a monoclonal antibody (1B5) that reacts with specific sugar moieties of the P. gingivalis cell surface polysaccharide and membrane-associated Rgp gingipain showed no immunoreactivity with these fractions. Taken together, these results indicate a possible defect in sugar biogenesis in both the vimA- and vimE-defective mutants. These modulating genes play a role in the secretion, processing, and/or anchorage of gingipains on the cell surface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The vimE gene downstream of vimA is independently expressed and is involved in modulating proteolytic activity in Porphyromonas gingivalis W83.

Regulation/activation of the Porphyromonas gingivalis gingipains is poorly understood. A unique 1.3-kb open reading frame downstream of the bcp-recA-vimA transcriptional unit was cloned, insertionally inactivated with the ermF-ermAM antibiotic resistance cassette, and used to create a defective mutant by allelic exchange. In contrast to the wild-type W83 strain, the growth rate of the mutant st...

متن کامل

Inactivation of vimF, a putative glycosyltransferase gene downstream of vimE, alters glycosylation and activation of the gingipains in Porphyromonas gingivalis W83.

Regulation/activation of the Porphyromonas gingivalis gingipains is poorly understood. A 1.2-kb open reading frame, a putative glycosyltransferase, downstream of vimE, was cloned, insertionally inactivated using the ermF-ermAM antibiotic resistance cassette, and used to create a defective mutant by allelic exchange. In contrast to the wild-type W83 strain, this mutant, designated P. gingivalis ...

متن کامل

Sialidase and sialoglycoproteases can modulate virulence in Porphyromonas gingivalis.

The Porphyromonas gingivalis recombinant VimA can interact with the gingipains and several other proteins, including a sialidase. Sialylation can be involved in protein maturation; however, its role in virulence regulation in P. gingivalis is unknown. The three sialidase-related proteins in P. gingivalis showed the characteristic sialidase Asp signature motif (SXDXGXTW) and other unique domains...

متن کامل

VimA-dependent modulation of acetyl coenzyme A levels and lipid A biosynthesis can alter virulence in Porphyromonas gingivalis.

The Porphyromonas gingivalis VimA protein has multifunctional properties that can modulate several of its major virulence factors. To further characterize VimA, P. gingivalis FLL406 carrying an additional vimA gene and a vimA-defective mutant in a different P. gingivalis genetic background were evaluated. The vimA-defective mutant (FLL451) in the P. gingivalis ATCC 33277 genetic background show...

متن کامل

HtrA in Porphyromonas gingivalis can regulate growth and gingipain activity under stressful environmental conditions.

In several micro-organisms, HtrA, a serine periplasmic protease, is considered an important virulence factor that plays a regulatory role in oxidative and temperature stress. The authors have previously shown that the vimA gene product is an important virulence regulator in Porphyromonas gingivalis. Further, purified recombinant VimA physically interacted with the major gingipains and the HtrA ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Infection and immunity

دوره 73 3  شماره 

صفحات  -

تاریخ انتشار 2005